Neuroscience

Konnerth, Arthur

Function of cortical circuits in health and disease, dendritic signalling and synaptic mechanisms

Cellular mechanisms of cortical function in vivo: We use two-photon calcium imaging in different areas of the mouse cortex (visual, auditory, sensorymotor) combined with targeted patch-clamp recordings to study electrical signaling and plasticity of specific types of neurons in behaviorally-defined conditions.

Cerebellar function and plasticity: We are interested in synaptic mechanisms, including the roles of mGlu receptors, TRPC channels, calcium signaling as well as in cerebellar sensory integration.

Dendritic signaling in vivo: Our major aim is the visualization and mapping of sensory-evoked signals on the level of individual synaptic inputs in defined neurons of the mouse cortex.
In vivo neurophysiology of Alzheimer’s disease. We focus on the impairments in synaptic signaling of cortical and hippocampal neurons in mouse models of Alzheimer’s disease.

Development of imaging technology: We develop and implement two-photon imaging devices with a high spatial and temporal resolution for the functional analysis of networks, cells and subcelullar compartments in vitro and in vivo.

Selected publications:

Zott, B., Simon, M.M., Hong, W., Unger, F., Chen-Engerer, H.J., Frosch, M.P., Sakmann, B., Walsh, D.M., and Konnerth, A. (2019). A vicious cycle of beta amyloid-dependent neuronal hyperactivation. Science 365, 559-565.

Chen-Engerer, H.J., Hartmann, J., Karl, R.M., Yang, J., Feske, S., and Konnerth, A. (2019). Two types of functionally distinct Ca(2+) stores in hippocampal neurons. Nat Commun 10, 3223.

Tischbirek, C.H., Birkner, A., and Konnerth, A. (2017). In vivo deep two-photon imaging of neural circuits with the fluorescent Ca(2+) indicator Cal-590. J Physiol 595, 3097-3105.

Zott, B., Busche, M.A., Sperling, R.A., and Konnerth, A. (2018). What Happens with the Circuit in Alzheimer's Disease in Mice and Humans? Annu Rev Neurosci 41, 277-297.

Birkner, A., Tischbirek, C.H., and Konnerth, A. (2017). Improved deep two-photon calcium imaging in vivo. Cell Calcium 64, 29-35.

Tischbirek, C.H., Birkner, A., and Konnerth, A. (2017). In vivo deep two-photon imaging of neural circuits with the fluorescent Ca(2+) indicator Cal-590. J Physiol 595, 3097-3105.

Busche, M.A., Grienberger, C., Keskin, A.D., Song, B., Neumann, U., Staufenbiel, M., Forstl, H., and Konnerth, A. (2015a). Decreased amyloid-beta and increased neuronal hyperactivity by immunotherapy in Alzheimer's models. Nat Neurosci 18, 1725-1727.

Busche, M.A., Kekus, M., Adelsberger, H., Noda, T., Forstl, H., Nelken, I., and Konnerth, A. (2015b). Rescue of long-range circuit dysfunction in Alzheimer's disease models. Nat Neurosci 18, 1623-1630.

Tischbirek, C., Birkner, A., Jia, H., Sakmann, B., and Konnerth, A. (2015). Deep two-photon brain imaging with a red-shifted fluorometric Ca2+ indicator. Proc Natl Acad Sci U S A 112, 11377-11382.

Hartmann, J., and Konnerth, A. (2015). TRPC3-dependent synaptic transmission in central mammalian neurons. J Mol Med (Berl) 93, 983-989.

Grienberger, C., Chen, X., and Konnerth, A. (2015). Dendritic function in vivo. Trends Neurosci 38, 45-54.

http://www.ifn.med.tum.de/new/