Infection and Immunology

Schmidt-Weber, Carsten

Immune reprogramming. Environmental health. Immune metabolic. COVID19. Lipid mediators

Environmental disease such as COVID19 or allergies are a major burden for our societies. They challenge the epithelial surfaces in an interplay with the immune system. Allergy is among the most frequent disease world wide and is further increasing in prevalence and will further aggravate with climate changes. Key aim is to understand natural tolerance mechanisms as well as therapeutic re-induction by treatment, convalescence or naturally remission. To prevent pandemics and epidemics in the future the ZAUM is monitoring the the environment and was able to install an automatic pollen measurement network in Bavaria. For COVID19 and other airway diseases we are exploring non-invasive diagnosis option using biomarker that are identified in our basic research activities. Also for skin barriers dramatic progress could be generated and novel diagnostic approaches are developing out of basic research based on human biobank samples.
Being a hybrid institute of TUM and Helmholtz Society, the institute takes advantage of cutting edge technologies as well as the strength of an university clinic. The institute offers a unique range of expertise from genetics over omics to bedside that has previously promoted careers with international recognition. ERC and EU, BMBF and DFG grants are lead by the team. ZAUM PIs are also member of several SFB/TRs and are also member of the German Center of Lung Research (DZL), and generated over the last 5 years more than 15 million € research funding. Graduates from ZAUM get usually employment opportunities from all over the world due to the outstanding publication record, 4 Profs were promoter from ZAUM alumni.

Selected publications:

de Los Reyes Jimenez, M. et al. An anti-inflammatory eicosanoid switch mediates the suppression of type-2 inflammation by helminth larval products. Sci Transl Med 12, (2020).

Zissler, U. M. et al. Early IL-10 producing B-cells and coinciding Th/Tr17 shifts during three year grass-pollen AIT. EBioMedicine 36, 475-488, (2018).

Oteros, J. et al. Artemisia pollen is the main vector for airborne endotoxin. J Allergy Clin Immunol 143, 369-377 e365, (2019).

Garzorz-Stark, N. et al. Toll-like receptor 7/8 agonists stimulate plasmacytoid dendritic cells to initiate TH17-deviated acute contact dermatitis in human subjects. J Allergy Clin Immunol 141, 1320-1333 e1311, (2018).

Xie, K. et al. Every-other-day feeding extends lifespan but fails to delay many symptoms of aging in mice. Nat Commun 8, 155, (2017).

Dietz, K. et al. Age dictates a steroid-resistant cascade of Wnt5a, transglutaminase 2, and leukotrienes in inflamed airways. J Allergy Clin Immunol 139, 1343-1354 e1346, (2017).

Krause, L. et al. A computational model to predict severity of atopic eczema from 30 serum proteins. J Allergy Clin Immunol 138, 1207-1210, (2016).

Chaker, A. M. et al. Short-term subcutaneous grass pollen immunotherapy under the umbrella of anti-IL-4: A randomized controlled trial. J Allergy Clin Immunol 137, 452-461 e459, doi:10.1016/j.jaci.2015.08.046 (2016).

Quaranta, M. et al. Intraindividual genome expression analysis reveals a specific molecular signature of psoriasis and eczema. Sci Transl Med 6, 244ra290, (2014).

Pennino, D. et al. IL-22 suppresses IFN-gamma-mediated lung inflammation in asthmatic patients. J Allergy Clin Immunol 131, 562-570, doi:10.1016/j.jaci.2012.09.036 (2013).

Eyerich, S. et al. Mutual antagonism of T cells causing psoriasis and atopic eczema. N Engl J Med 365, 231-238, (2011).

https://www.zaum-online.de/